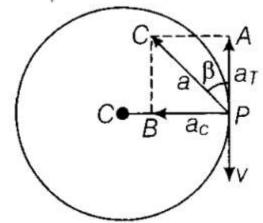
Q 02 A cyclist is riding with a speed of 27 kmh⁻¹. As he approaches a circular turn on the road of radius 80 m, he applies brakes and reduces his speed at the constant rate of 0.5 ms⁻². What is the magnitude and direction of the net acceleration of the cyclist on the circular turn?

Sol. Here, v = 27 kmh⁻¹ =
$$27 \times (1000 \mathrm{m}) \times (60 \times 60 \mathrm{s})^{-1}$$
 = 7.5 ms⁻¹, r = 80 m Centripetal acceleration, $a_c = \frac{v^2}{r} = \frac{(7.5)^2}{80} = 0.7 \mathrm{ms}^{-2}$


Let the cyclist applies the brakes at the point P of the circular turn, then tangential acceleration a_T will act opposite to velocity. Acceleration along the tangent,

$$a_T = 0.5 \text{ ms}^{-2}$$

Angle between both the accelerations is 90°

Therefore, the magnitude of resultant acceleration,

a =
$$\sqrt{a_c^2 + a_T^2} = \sqrt{(0.7)^2 + (0.5)^2}$$
= 0.86 ms $^{-2}$

Let the resultant acceleration make an angle β with the tangent i.e, the direction of net acceleration of the cyclist, then

$$aneta=rac{a_c}{a_T}=rac{0.7}{0.5}$$
= 1.4 or $eta=54^{\circ}28'$